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1. Introduction.-In abstract algebraic geometry we can define two kinds of ir-
regularities of an algebraic variety, and also one more if the variety is normal.
They are, substantially, of different natures, and one of the main theorems in
transcendental algebraic geometry asserts that they have the same value if the
variety is nonsingular. In this paper we shall prove an inequality among two of
them, i.e., we shall show that the dimension q of the Picard variety of a variety V
is not greater than the dimension hl 0 of the space of linear differential forms of the
first kind on V. Actually, we shall prove more, i.e., the following: Let (A, f) be the
Albanese variety of V. Then bf has an "isomorphism property" in the sense that 5f
gives an isomorphism of the space of linear differential forms of the first kind on A into
the corresponding space associated with V. Since the linear differential forms of the
first kind on an Abelian variety are exactly the Maurer-Cartan forms, it follows that
the dimension of A, which is equal to q by duality,' is not greater than hly 0.

2. Summary of General Results.-Let f be a function on a variety V with values
in a variety U. Let K be a field of definition of f, hence also of V, and let M be a
generic point of V over K. If K(M) is separably generated over K(f(M)), then f
is called separable. It can be verified easily that this property is "absolute," i.e.,
it is independent of the choice of K and il3. If the image variety W is not contained
in the singular locus of U, we can define a mapping 3f of the space of differential
forms on U which are "regular along W" into the space of all differential forms on
V.2 The mapping 8f is linear over the universal domain K and is commutative
with the exterior multiplication and the exterior differentiation of differential
forms. Moreover, if 0 is a numerical function on U which is regular along W, then
bf * q = 0o f holds. Here q o f denotes the composite function of f and X, which is
defined without ambiguity by.assumption. Conversely, these properties deter-
mine 5f uniquely. It is easy to see that f, regarded as a function on V with values
in W, is separable if and only if bf gives an isomorphism of the space of all differen-
tial forms on W into the corresponding space associated with V. On the other
hand, let g be a function on U with values in a variety T. If g is regular along W,
and if 0 is a differential form on T which is regular along the image variety of g,
then we have bf[bg * 0] = 5(g o f) * 0. In particular, if f is an inclusion map of V into

VOL. 41,~1955 317



MATHEMATICS. J. IGUSA

U, we have Tr, [g .0] = 6(Tr, g) .0. A differential form on U is said to be of the
first kind if it is regular at every simple point of any model of the function field of
U.3 If U is nonsingular, the differential form is already of the first kind if it is
everywhere regular on U. More generally, if U is nonsingular, bf maps the space
of differential forms on U which are everywhere regular on U into the space of dif-
ferential forms of the first kind on V.4 In particular, this is always the case if U
is an Abelian variety. On an Abelian variety A, a differential form is everywhere
regular if and only if it is invariant by Ot for all translations t of A. There are as
many linearly independent linear differential forms of the first kind on A as its
dimension. We know also that every invariant differential form. on A is closed,
at least if the characteristic of K is different from 2.5

3. The Isomorphism Property of 6f.-Let V be a nonsingular projective model of
a function field of dimension 2 over K. We have constructed elsewhere6 a linear
pencil {C.J on V with a parameter straight line D of the "simplest possible na-
ture." We have also defined a subvariety J of a product D X LN of D and of a pro-
jective space LN such that Jo ((u) X LN) = (u) X J. is defined for every (u) and
such that J. is the Jacobian variety of C,, when Cu is nonsingular, and Ju is a com-
pletion of the "generalized Jacobian variety" of Cu, when Cu has a double point.
Moreover, we have defined a birational correspondence so of V into J which has the
following property:
LEMMA 1. The mapping bio gives an isomorphism of the space of linear differential

forms of the first kind on J onto the corresponding space associated with V.
On the other hand, let (A, h) be the Albanese variety of J. Since h is regular at

every simple point of J,7 the composite function f = h o p is defined. Moreover,
as we have also shown, (A, f) is the Albanese variety of V:

V ,

f\ h

Therefore, by Lemma 1, 6f has an isomorphism property if and only if Ah has an
isomorphism property.
Now let m be a positive integer and consider the m-fold direct product J X . . .

X J. If zi, ., Zm are m simple points of J, we can define a function H on this

product with values in A by H(z1 X ... X Zm) = Z h(zi). If we denote by J.
if=l

the product (u) X Ju, then a result of Chow can be stated as follows:8
LEMMA 2. Let (ul), . . ., (ur) be independent generic points of D over a field of

definition K of J, A and h. Then Trju, x ... x Jum H is separable for m sufficiently
large.
We shall now show that Ah has an isomorphism property. Let 0 be a linear dif-

ferential form of the first kind on A. Then 6H *0 is a similar form on J X ... X J.
Therefore, if pi denotes the projection of J X ... X J to its ith factor, there are
uniquely determined m linear differential forms wi of the first kind on J such that

AH-@ = E bpip . holds.9 Since SHN0 is invariant under the interchange of factors
i =1
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of the product, the coW coincide with each other. Hence we can write 6H-O =
m

E 3pi.w with a single w. Here c = 0 implies 6H.6 = 0, hence, in particular,

Trj~1X... XJum [8H10] = 5(Trju1x ... XJum H).0 = 0. However, since A
itself is the image variety of Trj., x ... x Ju,. H, we conclude from Lemma 2
that 0 = 0. On the other hand, if we fix m - 1 simple points z2, . .. ,zX. onX J, and
if z is a variable point on J, we can define a function g on J with values in J X ...
X J by g(z) = z X Z2 X ... X Zm. Also, let t be the translation of A associated

m

with the point Ej h(z,) of A. Since q is a Maurer-Cartan form, we then get
i = 2

bg[SH-0] = 5(Hog).0 = S(toh).0 = 5h[St.0] = Ah@0. On theotherhand,wehave
m mn m==

5g[ E 5ps@] = bg1Bpi.w] = j 5(pPo g) o (pio g) co= . Hence we get
i =li =1l

co = -h0, and therefore 5h has the isomorphism property.
On the other hand, if V is any algebraic surface, by a result of Zariski together

with a recent result of Abhyankar,'0 we can find a nonsingular surface V' which is
birationally equivalent to V. Let so be the function on V with values in V' which
represents this birational correspondence. Also, let (A, f') be the Albanese variety
of V'. Then f = f o jo is defined, and (A, f) is the Albanese variety of V. Since
af' has an isomorphism property, 5f also has this property.

Finally, let V be an arbitrary variety, and let (A, f) be the Albanese variety of V.
In order to prove the isomorphism property of 8f, we may assume that dim (V)
> 3. Let K be a field of definition of A andf, hence also of V, and let L be a gen-
eric hyperplane over K in the ambient space of V. Then the intersection product
V = V. L is defined and is an absolutely irreducibly variety of dimension dim (V)
-1 by the "theorem of Bertini.""1 Moreover, if we putf = Trmf, then we know
that (A, f) is the Albanese variety of V.12 Therefore, if we apply an induction to
the dimension of V, we may assume that 6! = Tr- [af I has an isomorphism property.
Then, a fortiori, 6f has the isomorphism property.

In this way the theorem we have stated in the Introduction is proved completely.
We note also that the image by 6f of the space of linear differential forms of the first
kind on A is composed of closed forms, at least if the characteristic of K is different
from 2.
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The path space described here provides a very simple demonstration of the
topological invariance of the Stiefel-Whitney classes for a differentiable manifold
M. This invariance has been proved by other means by R. Thom.'

Actually, Thom proves a more general result, which implies the topological
invariance of these classes. He shows that the fiber homotopy type of the tangent
bundle of M depends only on the topological structure of M. Because the Stiefel-
Whitney classes are dependent only on the fiber homotopy type of the tangent
bundle, their topological invariance follows.
The path space we introduce is regarded as a fiber space2 over M, and it turns out

to have the same fiber homotopy type as the tangent bundle. Since the definition of
the path space is purely topological, the general result of Thom follows immedi-
ately. Also, one sees directly that the Stiefel-Whitney classes have an analogue for
manifolds without differentiability structure.
The paths considered are all continuous parametrized paths in M (parametrized by

t00 < t < 1), which do not recross the starting point (where t = 0). So, if x(t) is the
point with parameter t,

x(t) $ x(0) for t > 0

is the requirement. These paths form a fiber space over M if we define the pro-
jection mapping toM by mapping each path into its starting point, x(O).
We can regard M as provided with a smooth Riemannian metric. It is con-

venient2 to assume that this metric is such that the geodesic distance between any
pair of conjugate points is always more than one. Then, if two points are not more
than one unit apart, there is a unique shortest geodesic segment joining them, and
this segment varies continuously with the points.
The tangent bundle can now be regarded as formed by the geodesic paths of

length 1, parametrized by arc length. This makes it a subspace of our fiber space
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